Nonlinear Forecasting Using Nonparametric Transfer Function Models
نویسنده
چکیده
The focus of this paper is using nonparametric transfer function models in forecasting. Nonparametric smoothing methods are used to model the relationship between variables (the transfer function) and the noise is modeled as an Autoregressive Moving Average (ARMA) process. The transfer function is estimated jointly with the ARMA parameters. Nonparametric smoothing methods are flexible thus can be used to model highly nonlinear relationships between variables. In this paper polynomial splines are used to model the transfer function. Modeling noise term as an ARMA process removes the serial correlation so the transfer function can be estimated efficiently. As a result, the nonparametric transfer function model can generate accurate forecasts when the transfer function is highly nonlinear with unknown functional form. The proposed polynomial splines-based estimator is also highly computationally efficient. The performance of nonparametric transfer function models is demonstrated in this paper by forecasting river flow based on temperature and precipitation. A comparison of the results show that the performance of this model is better than some widely accepted benchmark models. Key–Words: Nonparametric smoothing, Time series, Forecast
منابع مشابه
Rainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملForecasting GDP Growth Using ANN Model with Genetic Algorithm
Applying nonlinear models to estimation and forecasting economic models are now becoming more common, thanks to advances in computing technology. Artificial Neural Networks (ANN) models, which are nonlinear local optimizer models, have proven successful in forecasting economic variables. Most ANN models applied in Economics use the gradient descent method as their learning algorithm. However, t...
متن کاملپیشبینی قیمتهای نقدی گازطبیعی به کمک مدلهای غیرخطی ناپارامتریک
Developing models for accurate natural gas spot price forecasting is critical because these forecasts are useful in determining a range of regulatory decisions covering both supply and demand of natural gas or for market participants. A price forecasting modeler needs to use trial and error to build mathematical models (such as ANN) for different input combinations. This is very time consuming ...
متن کاملAn Empirical Analysis of Constrained Support Vector Quantile Regression for Nonparametric Probabilistic Forecasting of Wind Power
Uncertainty analysis in the form of probabilistic forecasting can provide significant improvements in decision making processes in the smart power gird for better integrating renewable energies such as wind. Whereas point forecasting provides a single expected value, probabilistic forecasts provide more information in the form of quantiles, prediction intervals, or full predictive densities. Th...
متن کاملThree Approaches to Time Series Forecasting of Petroleum Demand in OECD Countries
Petroleum (crude oil) is one of the most important resources of energy and its demand and consumption is growing while it is a non-renewable energy resource. Hence forecasting of its demand is necessary to plan appropriate strategies for managing future requirements. In this paper, three types of time series methods including univariate Seasonal ARIMA, Winters forecasting and Transfer Function-...
متن کامل